
SELinux Integration into Linux Kernel.
Vinay Karajagi ,Meenakshi Garg

VES Institute of Technology (VESIT), Chembur Mumbai:-74, Maharahstra, India

Abstract: The protection mechanisms of many mainstream
operating systems were inadequate to support confidentiality
and integrity requirements for end systems. To address this
problem, the National Security Agency (NSA) worked with
Secure Computing Corporation (SCC) to develop a strong,
flexible mandatory access control architecture based on Type
Enforcement. The NSA has integrated the SELinux
architecture into the Linux operating system to transfer the
technology to a larger developer and user community. This
paper presents the design and implementation for integrating
the security mechanisms of the SELinux architecture into the
Linux kernel.

1. INTRODUCTION:
The Linux kernel is a Unix-like computer operating system
kernel. The Linux kernel is a widely used operating system
kernel world-wide, the Linux operating system is based on
it and deployed on both traditional computer systems,
usually in the form of Linux distributions, and on
embedded devices such as routers. The Android operating
system for tablet computers and smartphones is also based
atop the Linux kernel. The Linux kernel was initially
conceived and created in 1991 by Finnish computer science
student Linus Torvalds, for his personal computer and with
no cross-platform intentions, but has since expanded to
support a huge array of computer architectures, many more
than other operating systems or kernels. Linux rapidly
attracted developers and users who adapted code from other
free software projects for use with the new operating
system. The Linux kernel has received contributions from
nearly 12,000 programmers from more than 1,200
companies, including some of the largest software and
hardware vendors.
Security-Enhanced Linux (SELinux) is a Linux kernel
security module that provides a mechanism for supporting
access control security policies, including United States
Department of Defense style mandatory access controls
(MAC). SELinux is a set of kernel modifications and user-
space tools that have been added to various Linux
distributions. Its architecture strives to separate
enforcement of security decisions from the security policy
itself and streamlines the volume of software charged with
security policy enforcement. The key concepts underlying
SELinux can be traced to several earlier projects by the
United States National Security Agency.
We can further progress with learning the integration
strategy for SELinux. The integration style greatly depends
on the end system core structure. End systems must be able
to enforce the separation of information based on
confidentiality and integrity requirements to provide system
security. Operating system security mechanisms are the
foundation for ensuring such separation. Unfortunately,
existing mainstream operating systems lack the critical
security feature required for enforcing separation:
mandatory access control. As a consequence, application

security mechanisms are vulnerable to tampering and
bypass, and malicious or flawed applications can easily
cause failures in system security. To address this problem,
the National Security Agency (NSA) worked with Secure
Computing Corporation (SCC) to research a strong, flexible
mandatory access control architecture based on Type
Enforcement, a mechanism first developed for the LOCK
system . The NSA and SCC developed two Mach-based
prototypes of the architecture: DTMach and DTOS. The
NSA and SCC then worked with the University of Utah’s
Flux research group to transfer the architecture to the Fluke
research operating system. During the transfer, the
architecture was enhanced to provide better support for
dynamic security policies. This enhanced architecture was
named SELinux. The NSA is now integrating the SELinux
architecture into the Linux operating system to transfer the
technology to a larger developer and user community.
Researchers in the NSA’s Information Assurance Research
Office have implemented the architecture in the major
subsystems of the Linux kernel, including mandatory
access controls for operations on processes, files, and
sockets. The Secure Execution Environments (SEE) group
at NAI Labs is working with the NSA in further developing
and configuring this security-enhanced Linux system. SCC
and MITRE are assisting the NSA in developing
application security policies and enhanced utility programs.
This paper describes work by the NSA and NAI Labs in
integrating the security mechanisms of the SELinux
architecture into the Linux kernel.
The paper begins by providing an overview of the SELinux
policy model and its Linux security approach.While the use
of a simpler access control model might make it easier to
ensure that security goals are met, we believe that this
would result in applications failing to run conveniently, and
ultimately, the circumvention of these security goals. The
comprehensive nature of the SELinux policy model enables
flexible trade-offs between application and security goals.
For example, the SELinux example policy itself is
developed by proposing application policies and refining
them based on the policy violations that may be generated.

Vinay Karajagi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3388-3391

www.ijcsit.com 3388

2. SELINUX POLICY MODEL:
While SELinux supports a variety of access control policy
models , the main focus of SELinux policy development
has been an extended Type Enforcement (TE) model . In
this section, we provide a brief overview of the SELinux
policy model concepts, focusing only on the concepts that
are relevant to the analysis that we perform. A number of
other concepts are represented in the SELinux extended TE
model, such as roles and identity descriptors, that we do not
cover here. The traditional TE model has subject types
(e.g., processes) and object types (e.g., files, sockets, etc.),
and access control is represented by the permissions of the
subject types to the object types. In SELinux, the
distinction between subject and object types has been
dropped, so there is only one set of types that are object
types and may also act as subject types. All objects are
labelled with a type. All objects are an instance of a
particular class (i.e., data type) which has its own set of
operations. Permission associates a type, a class, and an
operation set (a subset of the class’s operations). Thus,
permissions associated with SELinux types can be applied
independently to different classes. For example, different
rights can be granted to a user’s files than to their
directories. In fact, since the objects are of different classes,
they have different operations. Should the administrator
want to give different access rights to two objects of the
same class, then these objects must belong to different
types. Permission for a (subject) type to perform operations
on a (object) type are granted by the allow statement. Any
element of the permission relationship can be expressed
using this statement, so the expression of least privilege
rights is possible. The dontaudit statement provides a
variation on the basic permission assignment. A
combination of allow statements result in a union of the
rights specified, whereas a combination of dontaudit
statements on the same type pair and class are intersected.
In addition, the extended TE model also has type at tributes
that represent a set of types (i.e., all the types with that
attribute assigned). Type attributes enable assignment to
multiple types at a time. For example, permission can be
assigned to each subject type with that attribute or a subject
can be assigned permission to each object type with that
attribute.
Containment is enforced by limiting the permissions
accessible to a subject type (as described above), limiting
the relabelling of object types, and limiting the domain
transitions that can be made by a subject type. Relabel
rights are controlled in SELinux by limiting access to
relabel-from and relabel-to operations. As the names
indicate, relabel-to enables objects to be relabelled to that
type and relabel-from enables objects of a particular type to
be relabelled. Domain transitions can occur when a subject
type executes a new program. Again, SELinux defines an
operation, called transition, to perform these transitions. A
subject type must have transition permission for the
resultant subject type in order to affect a domain transition.
The SELinux model also has statements for type transition
and type change. Type transition statements are used by
SELinux to automatically compute transitions, but are not
necessary for control (i.e., transition permissions are always

necessary). Type change statements alter the type of an
object upon access by the specified subject type. Such
statements are useful when a system administrator logins in
using a user’s teletype. Type change statements transition
the object type of the teletype to prevent users from altering
input. In order to simplify the task of expressing policies,
the SELinux extended TE model also includes a large
number of macros for expressing sets of policy statements
that commonly occur together.

2.1 SELinux Example Policy:
The SELinux community is working jointly on the
development of UNIX application policies whose
composition is called the SELinux example policy. The
SELinux example policy does not define a secure system,
but is intended as input to the development of a custom
policy for each site’s security goals, commonly called a
security target. Unfortunately, customization is not simply
composition of the policies for the applications of interest.
The application policies themselves are somewhat
specialized to the environment in which they were
developed, and interactions between the policies of
multiple applications may lead to vulnerabilities. In
general, the composition of policies that are proven secure
may not result in a secure system. The task of
customization is further complicated by the size of the
example policy and the complexity of the extended TE
model. The SELinux example policy for Linux 2.4.19
consists of over 50,000 policy statements (i.e., the
processed macro statements in policy.conf). Accordingly,
this specification represents over 700 subject types and
100,000 permission assignments. We believe that size and
complexity of the SELinux example policy make it
impractical to expect that typical administrators can
customize it to ensure protection of their trusted computing
base (TCB) and to satisfy their site’s security goals on this
TCB. SELinux example policy is valuable to building
secure systems, for following two reasons primarily:
(1) It provides a flexible enough representation to capture
the permissions necessary for UNIX applications to execute
conveniently.
(2) It provides a comprehensive definition of a reference
monitor for UNIX.
First, the SELinux example policy is developed per
application in a manner that identifies a superset of the
permissions required to run an application conveniently

Vinay Karajagi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3388-3391

www.ijcsit.com 3389

while possibly meeting a particular security target. What
typically happens is that a proposal is made for an
application policy, then this policy is tested by the
community when they use the application. Since SELinux
reports authorization failures (i.e., the lack of permission
requested), it is much easier to determine that insufficient
permissions were assigned than whether security
vulnerability is created. Thus, a verified proposal for least
privilege permissions for each application is represented by
the SELinux policy. What we need is a better way to test
whether our security goals are satisfied, such that conflicts
can be identified and addressed. Second, the SELinux
example policy is a comprehensive representation of UNIX
access control. The SELinux model aims to
comprehensively control access to all classes (i.e., kernel
data types) that may be operated upon by a user-level Linux
process. There are 29 classes defined in the SELinux
example policy. Each class has its own set of operations
that are intended to capture all the relevant subtleties in
accessing and modifying a class. Given the scope of the
SELinux example policy at this granularity, the SELinux
example policy provides as precise and comprehensive a
repository of UNIX application access control information
as exists today. We need to leverage this repository in the
development and refinement of security goals, but provide
such leverage through higher-level concepts that enable
effective management.

2.2 SELinux Security:
Unlike early MAC models like Bell-LaPadula and Biba, a
TE model does not explicitly indicate the security goals of
the policy. Thus, the policy implies the security goals of the
system. For a TE system, more like an access matrix, we
only learn that certain subjects can only perform certain
operations on certain objects. The security goals of the
policy are not represented at a higher-level than this. The
SELinux model provides an approach by which secrecy and
integrity properties may be achieved with least privilege
permissions and containment of services. The system
administrators create a policy that is restrictive with respect
to granting rights that violate secrecy and integrity
properties and we use the notions of least privilege and
containment to minimize the damage due to compromises
where these occur. From our perspective, the integrity of
the TCB is the basis of security, so that is the focus of our
analysis. In general, it is preferable to have a “minimal”

TCB. The smaller the TCB, the easier it is to verify the
components. However, if the minimal TCB subjects are
dependent on other subjects, then these other subjects must
be added to the TCB or dependencies must be removed. In
this paper, we will identify dependencies and determine
how to resolve them to keep our TCB as small as is
feasible. Since we are striving for a minimal TCB, we do
not assume a two-level integrity system (system and user),
but rather we start with the most fundamental system
services and try to determine how the integrity of these can
be enforced. In this paper, we only explicitly examine the
TCB and non-TCB boundary. Further, we note that the
benefits of least privilege permissions and containment are
not relevant to the protection of the TCB. Since the TCB
subject types can legitimately transition to any other subject
type, containment is not possible for the TCB subjects.
Therefore, the focus is on the integrity of these services.
kernel_t is the primordial subject type in the SELinux
system. It transitions to init_t which then can start a variety
of services. Key to our analysis are the administrative (e.g.,
sysadm_t, load_policy, setfiles_t, etc.) and authentication
subject types (e.g sshd_t, local_login_t, etc.) that determine
the basis for security decisions in SELinux. We also
include initrc_t and inetd_t because these services initiate
many of the services in a UNIX system. Of course, there
are lots of other services upon which the correct execution
of applications is necessary, but we chose this proposal for
a minimal TCB based primarily on the early appearance of
these services in the type transition hierarchy. Both of these
features indicate that vulnerabilities in that subject type will
be difficult to contain. While this TCB represents a small
number of subject types, the complexity of their
interactions with the rest of the system in the SELinux
policy makes manual verification impractical. First, each
subject type is included in around 500 to over 1000 policy
statements in policy.conf. Manual examination of this
many statements alone are impractical, but these statements
must be compared to the other thousands to determine
whether a significant conflict exists. Automated tools are
necessary to represent the security goals, identify conflicts,
and provide as much support as possible to conflict
resolution.

Vinay Karajagi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3388-3391

www.ijcsit.com 3390

3. CONCLUSION:
In this paper, we have presented an approach for analyzing
integrity protection of the SELinux example policy. The
SELinux module supports the recent Linux Security
Modules (LSM) framework for implementing mandatory
access control on the Linux kernel. The SELinux example
policy is undergoing active development and is being
applied in several installations. The aim is for
administrators to take the SELinux example policy and
customize it to their site’s security goals. This is quite
difficult because the SELinux policy model is quite
complex and the SELinux example policy is large. Our aim
is to provide an access control model to express site
security goals and resolve them against the SELinux policy.
In particular, we want to identify a minimal system TCB
for the SELinux example policy that satisfies Clark-Wilson
integrity restrictions relative to the rest of the system.
UNIX systems are not designed to meet Biba integrity, but
the Clark-Wilson integrity policy enables a description
where key data can be identified (those data used by TCB
subject types), and sanitization of low integrity data is
possible. Understanding this, we can further represent the
state of the integrity resolution which could be used by the
access control module to make authorization, audit, and
intrusion detection decisions.

REFERENCES:
1. C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman.

Linux Security Modules: Generalv security support for the Linux
kernel. Proceedings of the Eleventh USENIX Security Symposium,
August 2002.

2. C. J. PeBenito, F. Mayer, and K. MacMillan. Reference Policy for
Security Enhanced Linux. In SELinux Symposium, 2006.

3. Michael Wikberg, Helsinki University of Technology, Secure
computing: SELinux.

4. C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman.
Linux Security Modules: General security support for the Linux
kernel. In USENIX Security, 2002.

Vinay Karajagi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3388-3391

www.ijcsit.com 3391

